Problems in Topology
نویسندگان
چکیده
1. Background In computer graphics and image processing a scene is often represented as an array of 0's and 1's. The set of 1's represents the object or objects in the scene and the set of 0's represents the background. The array is usually two-dimensional, but three-dimensional image arrays are produced by reconstruction from projections in applications such as computer tomography and electron microscopy (see Rosenfeld and Kak [1982, Chapter 11]). The array elements are called pixels in the 2D case and voxels in the 3D case. We identify each array element with the lattice point in the plane or 3-space whose coordinates are the array indices of the element. The lattice points that correspond to array elements with value 1 are called black points and the other lattice points are called white points. Let S be the set of black points. In pattern recognition one sometimes wants to reduce the black point set to a " skeleton " S ⊆ S with the property that the inclusion of S in S is " topology-preserving ". This is called thinning. Figure 1 shows what effect a thinning algorithm might have on a digitized '6'. In Figure 1 the large black dots represent points in S, and the boxed black dots represent points in the skeleton S ⊆ S. In this paper we are mainly concerned with the requirement that a thinning algorithm must preserve topology. However, it has to be pointed out that a thinning algorithm must satisfy certain non-topological conditions as well. (For example, the skeleton produced by thinning the digitized '6' in Figure 1 must look like a '6', which means that the 'arm' of the 6 must not be shortened too much.) The non-topological requirements of thinning are hard to specify precisely 1 and are beyond the scope of this paper. For n = 2 or 3 write E n for n-dimensional Euclidean space and write Z n for the set of lattice points in E n. The topological requirements of two-dimensional thinning are well understood. Let S ⊇ S be finite subsets of Z 2. In this section we define what it means for the inclusion of S in S to preserve topology. In fact we shall give three different but equivalent definitions. Given any set T ⊆ Z 2 we can construct a plane polyhedron C(T) ⊆ E 2 from T as follows. For each …
منابع مشابه
DAMAGE IDENTIFICATION BY USING MODAL EXPANSION AND TOPOLOGY OPTIMIZATION IN THREE DIMENSIONAL ELASTICITY PROBLEMS
In this paper, topology optimization is utilized for damage detection in three dimensional elasticity problems. In addition, two mode expansion techniques are used to derive unknown modal data from measured data identified by installed sensors. Damages in the model are assumed as reduction of mass and stiffness in the discretized finite elements. The Solid Isotropic Material with Penalization (...
متن کاملSTRUCTURAL DAMAGE DETECTION BY USING TOPOLOGY OPTIMIZATION FOR PLANE STRESS PROBLEMS
This paper aims to introduce topology optimization as a robust tool for damage detection in plane stress structures. Two objective functions based on natural frequencies and shape modes of the structure are defined to minimize discrepancy between dynamic specifications of the real damaged structure and the updating model. Damage area is assumed as a porous material where amount of porosity sign...
متن کاملOn two problems concerning the Zariski topology of modules
Let $R$ be an associative ring and let $M$ be a left $R$-module.Let $Spec_{R}(M)$ be the collection of all prime submodules of $M$ (equipped with classical Zariski topology). There is a conjecture which says that every irreducible closed subset of $Spec_{R}(M)$ has a generic point. In this article we give an affirmative answer to this conjecture and show that if $M$ has a Noetherian spectrum, t...
متن کاملSOLVING MULTI CONSTRAINTS STRUCTURAL TOPOLOGY OPTIMIZATION PROBLEM WITH REFORMULATION OF LEVEL SET METHOD
Due to the favorable performance of structural topology optimization to create a proper understanding in the early stages of design, this issue is taken into consideration from the standpoint of research or industrial application in recent decades. Over the last three decades, several methods have been proposed for topology optimization. One of the methods that has been effectively used in stru...
متن کاملOn the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1990